簡要描述:氣溶膠霧化器能夠產生穩定、細膩的氣溶膠,給動物暴露實驗或者細胞暴露實驗提供穩定的霧化環境
聯系電話:021-54377179
氣溶膠霧化器能夠產生穩定、細膩的氣溶膠,給動物暴露實驗或者細胞暴露實驗提供穩定的霧化環境。
氣溶膠霧化器是全身暴露或者口鼻暴露的重要組成部分,可配合暴露箱或者暴露塔使用,將藥物霧化后的氣溶膠推送到暴露內,并持續霧化和維持暴露箱內一定的氣溶膠濃度。
我們可以提供Aerogen Pro霧化器和Aerogen Solo霧化器:設備采用鈀合金振動網格技術,中心孔板直徑5mm,均勻分布著1000個精密成形微孔,每秒振動128,000次,形成非常有利于沉淀入肺部沉積的氣溶膠顆粒滴。
型號:Aerogen Pro
型號:Aerogen Solo
產品主要優勢:
· 無論短時程和長時程實驗都能保證出色地輸出持續一致;
· 霧化劑量小;
· 粒度分布和顆粒物體濃度具有高度的可重復性;
· 隨時可填充藥物,也可以加配注射泵自動添加藥物;
· 抗腐蝕外殼設計,持久耐用;
· 高度集成化、體積小巧;
· 操作簡單,無需復雜的培訓工作;
霧化頭的主要參數:
· 小型:Volume Median Diameter(VMD)
· 霧化速率:>0.1mL/min
· 顆粒尺寸:VMD (體積中值直徑)介于2.5μm and 4.0μm
· 藥物殘余量:<0.1mL
· 液體霧化氣溶膠在科學研究、藥物開發、質量檢測中有很多應用;
霧化器連接示意圖:
霧化的顆粒物粒徑分布:
根據需要,您還可以選擇BGI Collison氣溶膠發生器
MRE型Collison氣溶膠發生器是由英國波頓的Microbiological Research Establishment設計的平底型噴霧器,有1噴嘴,3噴嘴和6噴嘴多種型號可選,3噴嘴是的型號。
金屬部件都是由316不銹鋼加工而來,O型圈是丁腈橡膠或硅橡膠,玻璃罐是冕牌玻璃制成。
BGI噴霧器頂部的"T"形桿既提供了空氣進口,又可以連接了壓力表。
24 Jet Collison型號的噴霧器(24噴嘴的型號)是6噴嘴MRE改良型的擴大版。它有一個32盎司,干凈覆膜的瓶子,以保持和3噴嘴、6噴射噴霧器相同的墻板間距尺寸,能夠輸出4倍左右于6噴嘴相同特性的氣溶膠,但壓力需要限制在30 PSIG。
下圖是Collison氣溶膠發生器配套動物染毒箱、壓縮泵進行動物動態暴露染毒
或者選擇PALAS霧化發生器
型號:PLG 1000
主要技術參數:
· 體積流量:1-23 L/min
· 尺寸:28*13*10cm
· 重量:2kg
· 質量流(顆粒):2.5g/h,產生的質量流量約為5g/h(取決于使用的氣溶膠物質)
· 氣溶膠出口連接:內徑11mm,外徑14mm
· 平均粒徑(個):0.4µm (DEHS)
· 灌裝量:70 ml
動物染毒箱
有多種規格和尺寸可供選擇,可以根據客戶的需求進行定制:
我們還可以根據實驗室需求,推薦更適合的霧化染毒搭配方案,敬請。
粉塵氣溶膠發生器:可對粉塵進行霧化,產生穩定的粉塵氣溶膠
香煙煙霧發生器:可以產生大量的香煙煙霧和PM2.5顆粒
氣溶膠濃度測量儀:用于對暴露環境的氣溶膠濃度進行實時測量
動物暴露染毒箱:用于對動物進行長時間的氣溶膠暴露
氣溶膠發生器部分參考文獻:
1.Sidler-Moix A L, Di Paolo E R, Dolci U, et al. Physicochemical aspects and efficiency of albuterol nebulization: comparison of three aerosol types in an in vitro pediatric model[J]. Respiratory care, 2015, 60(1): 38-46.
2.Hassan A, Rabea H, Hussein R R S, et al. In-vitro characterization of the aerosolized dose during non-invasive automatic continuous positive airway pressure ventilation[J]. Pulmonary Therapy, 2016, 2: 115-126.
3.ElHansy M H E, Boules M E, El Essawy A F M, et al. Inhaled salbutamol dose delivered by jet nebulizer, vibrating mesh nebulizer and metered dose inhaler with spacer during invasive mechanical ventilation[J]. Pulmonary pharmacology & therapeutics, 2017, 45: 159-163.
4.Fang T P, Lin H L, Wan G H, et al. In vitro evaluation of aerosolized delivery of various medications during mechanical ventilation[J]. 2017.
5.Abdelrahim M E A, Saeed H, Harb H S, et al. The Aerosol Generators Available for Critically Ill Patient[J]. Essentials of Aerosol Therapy in Critically ill Patients, 2021: 115-135.
6.ElHansy M H E, Boules M E, El Essawy A F M, et al. Inhaled salbutamol dose delivered by jet nebulizer, vibrating mesh nebulizer and metered dose inhaler with spacer during invasive mechanical ventilation[J]. Pulmonary pharmacology & therapeutics, 2017, 45: 159-163.
7.Gowda A A, Cuccia A D, Smaldone G C. Reliability of vibrating mesh technology[J]. Respiratory Care, 2017, 62(1): 65-69.
8.Gerde P, Nowenwik M, Sj?berg C O, et al. Adapting the aerogen mesh nebulizer for dried aerosol exposures using the preciseinhale platform[J]. Journal of aerosol medicine and pulmonary drug delivery, 2020, 33(2): 116-126.
9.Michotte J B, Staderini E, Le Pennec D, et al. In vitro comparison of a vibrating mesh nebulizer operating in inspiratory synchronized and continuous nebulization modes during noninvasive ventilation[J]. Journal of aerosol medicine and pulmonary drug delivery, 2016, 29(4): 328-336.
10.Cahill R A, Dalli J, Khan M, et al. Solving the problems of gas leakage at laparoscopy[J]. British Journal of Surgery, 2020, 107(11): 1401-1405.
11.Sarhan R M, Elberry A A, Abdelwahab N S, et al. Effect of a nebulizer holding chamber on aerosol delivery[J]. Respiratory care, 2018, 63(9): 1125-1131.
:,
:
yuyanbio
:yuyanbio